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Nonequilibrium stationary states are studied for a multibaker map, a simple 
reversible chaotic dynamical system. The probabilistic description is extended by 
representing a dynamical state in terms of a measure instead of a density func- 
tion. The equation of motion for the cumulative function of this measure is 
derived and stationary solutions are constructed with the aid of deRham-type 
functional equations. To select the physical states, the time evolution of the dis- 
tribution under a fixed boundary condition is investigated for an open multi- 
baker chain of scattering type. This system corresponds to a diffusive flow 
experiment through a slab of material. For long times, any initial distribution 
approaches the stationary one obeying Fick's law. At stationarity, the intracell 
distribution is singular in the stable direction and expressed by the Takagi func- 
tion, which is continuous but has no finite derivatives. The result suggests that 
singular measures play an important role in the dynamical description of non- 
equilibrium states. 

KEY WORDS: Nonequilibrium states; Fick's law; fractal; singular measure; 
deRham equation; dynamical chaos. 

1. INTRODUCTION 

T h e  u n d e r s t a n d i n g  o f  t r a n s p o r t  p r o p e r t i e s  is a l o n g - s t a n d i n g  p r o b l e m  in 

physics .  T r a n s p o r t  s u c h  as  d i f fus ion  is d e s c r i b e d  a t  the  m a c r o s c o p i c  level 

b y  p h e n o m e n o l o g i c a l  laws. In  p a r t i c u l a r ,  F i ck ' s  l aw a s s u m e s  t h a t  t he  f low 

of  pa r t i c les  ( J )  is l i nea r ly  p r o p o r t i o n a l  to  the  g r a d i e n t  o f  c o n c e n t r a t i o n  
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(7C) in gases, liquids, or solids, the proportionality constant being minus 
the diffusion coefficient, 

J =  - D V C  (1.1) 

Accordingly, if a difference of concentration is imposed at the boundaries 
of a slab of material, a linear concentration profile will establish itself by 
diffusion. In such a nonequilibrium stationary state, particles are diffusively 
migrating from one border to the other at a constant flow. Although this 
phenomenon has been described since the last century, how the 
microscopic reversible dynamics can accommodate such a nonequilibrium 
stationary state remains a mystery. The macroscopic aspects of Fick's law 
have been studied, in particular, in the framework of scaling statistical 
theoriesJ *1 However, little is known on the microscopic aspects of these 
nonequilibrium diffusive states. 

Recently, several works Iz-91 have been devoted to the study of simple 
chaotic models of deterministic diffusion. In particular, a time-reversible 
area-preserving mapl6-9~--referred to as a multibaker map--has been con- 
structed as a spatially extended generalization of the baker map. This two- 
degree-of-freedom system of hyperbolic character shares with the Lorentz 
gas (with finite horizon) the property that diffusion is induced by dynami- 
cal instability. The Liouvillian dynamics, which rules the time evolution of 
nonequilibrium statistical ensembles, is exactly solvable for this piecewise- 
linear map. In this way, the Frobenius-Perron operator admits a 
generalized spectral decomposition in terms of the Pollicott-Ruelle 
resonances ~1~ and the associated eigendistributions, as shown else- 
where. ~.2) The relevance of the Pollicott-Ruelle resonances to the problem 
of diffusion comes from the fact that the spectrum of these resonances 
approaches the spectrum of the phenomenological diffusion equation in the 
limit of large wavenumbers of the diffusive eigenmodesJ 6~ In this regard, 
the Pollicott-Ruelle resonances and the associated eigendistributions 
provide us with the exact microscopic analogs of the eigenvalues and eigen- 
functions of the macroscopic diffusion equationJ 6~ Beyond the invariant 
state which is uniform in space and corresponds to the microcanonical 
ensemble, the other eigendistributions correspond to decaying eigenmodes 
of diffusion. 

The novelty of this approach is that the generalized spectral decom- 
position of the time evolution operator displays the decay and relaxation 
rates of irreversible processes at the level of the microscopic phase-space 
dynamics and without any modification of the laws of motion. The 
possibility and generality of such a relation between the time evolution 
operator and the characteristic time scales of irreversible phenomena have 
been emphasized and discussed over the last 30 years by Prigogine and 
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co-workers. 1~3"14~ Thanks to the recent advances in dynamical system 
theory, a new and promising perspective is given to this possibility in the 
study of nonequilibrium statistical mechanics. 

In the present paper, we exactly construct in a multibaker map the 
nonequilibrium stationary states corresponding to constant gradients of 
concentration with the aim of understanding the mechanism by which such 
stationary states can be maintained under an area-preserving dynamics. 

The model we use here is a variant of the four-adic multibaker 
described in ref. 6. Rather than vertically stretching phase space cells by a 
factor four as in ref. 6, the present version of the multibaker acts by 
horizontal stretching by a factor two, as explained in Section 2. Accor- 
dingly, we refer to it as the dyadic multibaker. In Section 3, a general 
description of the time evolution of probability measures is introduced in 
terms of cumulative functions. In Section 4, solutions of the equation of 
motion corresponding to homogeneous stationary states are constructed 
with the aid of the deRham-type functional equations. A priori, the solu- 
tions possess intercell concentration profiles which are either linear or 
exponential. The intracell distribution is always singular along the stable 
direction, although the distribution along the unstable direction is smooth 
in the case of a linear intercell profile but singular in the case of an 
exponential intercell profile. For the particular case of a linear profile, the 
intracell distribution along the stable direction is described by the well- 
known Takagi function, which has self-similar properties reminiscent of 
fractal objects. Moreover, further stationary states are constructed with the 
aid of the time reversal operation. In Section 5, their flow properties are 
discussed and it is shown that the state with exponential intercell profile 
corresponds to a flow of ballistic type. On the other hand, the state with 
a linear profile corresponds to a flow of diffusion type, obeying either the 
Fick or anti-Fick law, where the distribution is smooth along the unstable 
or stable directions, respectively. 

In Section 6, using a time-evolution argument in a scattering con- 
figuration of the multibaker map where the concentration is fixed at both 
ends of a chain, we show that the linear concentration profiles satisfying 
Fick's law are selected. It turns out that the nonequilibrium stationary 
states with linear concentration profiles, whether they obey Fick's law or 
not, maximize the Kolmogorov-Sinai (KS) entropy per unit time that we 
define for the~e invariant states and, moreover, they satisfy Pesin's 
equality, 1~5''6~ i.e., the equality of the KS entropy to the sum of positive 
Lyapunov exponents. We remark here that the determination of physical 
measures has been extensively studied in ergodic theory, where the 
Kolmogorov measure or the Sinai-Ruelle-Bowen (SRB) measure have 
been shown to be physically realizable in closed systems whether the 
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dynamics is uniformly or nonuniformly hyperbolic. ~15' 16) However, the pre- 
sent situation differs in several respects from the ones previously con- 
sidered. In particular, the present system has an infinite spatial extension 
typical of open systems of nonequilibrium statistical mechanics, in contrast 
with the closed and finite systems. Accordingly, new types of invariant 
measures corresponding to nonequilibrium stationary states become 
possible, which have not yet been described in the literature. This point is 
further discussed in Sections 4, 5, and 8. In Section 7, the escape-time dis- 
tribution is discussed and is shown to be related to the derivative of 
Takagi-type functions. This result shows the deep relation existing between 
the nonequilibrium stationary states and the phenomenon of chaotic scat- 
tering. {6"7) Section 8 is devoted to concluding remarks, in particular, about 
the relation of the physical nonequilibrium stationary states to the eigen- 
distributions constructed elsewhere: 7"1"-~ 

The present study reveals the role of singular measures with self- 
similar fractal-like properties in nonequilibrium stationary states. We con- 
jecture that these properties are general and also arise in other deter- 
ministic systems sustaining nonequilibrium stationary states compatible 
with Fick's law. Preliminary results of the present study were reported at 
the 7th Toyota ConferenceJ ~7) 

2. M U L T I B A K E R  M A P  

The multibaker map is an area-preserving map which is defined on a 
periodic array of countably many unit squares and which exhibits diffusion 
processes. A 4-adic multibaker map has been proposed by one of us ~6) and 
the properties of diffusion and nonequilibrium states have been rigorously 
studied with the aid of zeta functions and of the "thermodynamic for- 
malism." Multibaker maps admit the Lebesgue measure as an invariant 
measure and the deviations from this equilibrium state decay via diffusion 
processes. The decay properties of the deviations are described by the 
corresponding Frobenius-Perron operator. The spectral properties of the 
Frobenius-Perron operator have been recently studied by Gaspard, ~71 
Hasegawa and Driebe] 81 and Tasaki et  alJ 9~ Thanks to the periodicity of 
the system, the Fourier transform of the Frobenius-Perron operator is 
block diagonal with respect to the quasimomentum. Each Fourier compo- 
nent of the Frobenius-Perron operator acquires a Jordan block structure 
once it is extended to a larger functional space than the Hilbert space of 
square integrable functions. The logarithms of the eigenvalues of the 
Frobenius-Perron operator give the decay rates of the correlation func- 
tions, 17-9~ which are known as Pollicott-Ruelle resonancesJ 1~ 
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In this paper, we study the properties of nonequilibrium stationary 
states for the simplest multibaker map defined on a one-dimensional array 
of unit squares: 

( ( n - -  1, 2x, Y), 0<~x< 1 

B(n'x'Y)=l(n+ 1, 2x--l,----~),Y+ 1 ~ < x < l l  
(2.1) 

where an integer n labels the unit squares and a pair (x, y) of real numbers 
(0 ~<x< 1, 0 ~< y < 1) stands for the coordinates in each unit square. The 
map B is schematically depicted in Fig. 1. This map is area preserving, so 
that it admits the Liouville measure, dx dy, as an invariant measure. 

The map B is invertible with the following inverse: 

I (  n+ l ' x2 '  2y),  0 ~ < y < ~  

B-'(n'x'Y)=l(n-1,----~,x+l 2 y - l ) ,  l ~ < y < l  
(2.2) 

Moreover, the system is time-reversal invariant, i.e., there exists an involu- 
tion I satisfying 

B -~ =IBI (2.3) 

which corresponds to the velocity inversion in the particle system 

I(n,x, y ) - ( n ,  l - y ,  l - x )  (2.4) 

The multibaker map B is uniformly hyperbolic with a stretching factor 
2 and thus possesses a positive Lyapunov exponent equal to In 2. 

Fig. 1. Action of the multibaker map B defined by Eq. (2.1) on its phase space composed of 
an infinite chain of squares. 



940 Tasaki and Gaspard 

3. D Y N A M I C A L  STATES A N D  THEIR T I M E  E V O L U T I O N  

In the conventional probabilistic description, the so-called Liouvillian 
description (e.g., refs. 13 and 18), dynamical states are specified by smooth 
density functions. The density functions univocally determine correspond- 
ing measures which are absolutely continuous with respect to the Liouville 
measure and conversely. If the measure is not absolutely continuous with 
respect to the Liouville measure, the previous description must be extended 
by representing the dynamical state directly in terms of the cumulative 
function which is the integral of the density when this latter exists. The 
following developments are based on this approach in terms of cumulative 
functions rather than on densities. 

On this ground, we consider the time evolution of a measure /~ 
describing a dynamical state under the multibaker map. We assume that 
the measure is a Borel measure. Under this condition, any/t-measurable set 
is expressed as a countable union of semiopen rectangles: 

{[O,x)x [o, y)}. (3.1) 

where the subscript n indicates that the rectangle [0, x) • [0, y) is a subset 
of the nth unit square. As a result, the measure/.t is completely specified by 
the cumulative function G: 

G(n, x, y) -=/x({ [0, x) x [0, y)},,) (3.2) 

In similarity with the proof of Liouville's theorem (e.g., ref. 18); the time 
evolution of the measure is found to be 

I~,+,(A)=I~,(B-'A) (3.3) 

where/~, stands for the measure at time t and A is an arbitrary measurable 
set. Equation (3.3) plays a role of the Liouville equation. Equation (3.3) 
induces the time-evolution equation for the cumulative function G. Since 

B-'{  [0, x) • [0, y)},, 

f{  [0. x /2)x  [0, 2y)} .+ , ,  

= {{[0,  x/2) x [0. 1)}.+, 
( w {[1/2, ( x +  1)/2) x [0, 2 y -  1)} ._ , ,  � 8 9  

(3.4) 
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we obtain 

G,+ i(n, x, y ) =  

. ( x )  
G, n + l , ~ , 2 y  , 0~<y<  1 

x x + l  2 y - - l )  

( ' ) - G ,  n - l , ~ , 2 y - 1  , ~<y-N<l 

(3.5) 

where G,(n, x, y) =it,({ [0, x) x [0, y)},,) is the cumulative function of the 
measure at time t. 

Setting x = 1 and y = 1 in (3.5), we have 

G,+l(n, l ,  1 ) = G , ( n + l ,  1,_ l ) + G , ( n - l , l ,  1 ) - G , ( n - l , ~ _ , l ) l  

=~ , ,+ l . ,G l (n+ l , l ,  1 ) + ( 1 - c % _ L , ) G , ( n - l , l ,  1) (3.6a) 
with 

G,(n, 1/2, 1) 
(3.6b) 

~ ' " ' -  G,(n, 1, 1) 

Since G,(n, 1, 1 ) is nonnegative and G,(n, 1/2, I ) ~< G,(n, 1, 1 ), 0c,,., satisfies 
0 ~< ~,,., ~< 1. Therefore, Eq. (3.6a) represents a random walk with cq,., being 
the transition probability from left to right at site n and time t. As ~ .... can 
take any real values, (3.6a) implies that the multibaker map contains 
uncountably many random walks. 

4. H O M O G E N E O U S  STATIONARY STATES AND 
DE R H A M - T Y P E  EQUATION 

4.1. Solving the Equation by Separation 

We now turn our attention to stationary states, which correspond to 
invariant measures and thus to time-independent solutions of (3.5): 

f;( x ( 1 (n+l~, / o.~,~ 
x G ( n , x , y ) =  n + l , ~ , l  + G  n - l ,  x + l  --2~' 2),- 1 

( 1 ) 1 
- G  n - l , ~ , 2 y - 1  , ~ < y ~ < l  

(4.1) 
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Since the x and y directions are mapped onto themselves in the multibaker 
map and are therefore independent, we can expect the existence of a 
product invariant measure, for which the cumulative function is a product 
of functions of x and y: 

G(n, x, y) = G(n, 1, y) F(n, x) (4.2) 

The functions G(n, I, y) and F(n, x) represent the distribution along the 
stable y direction and the unstable x direction respectively. 

It turns out that the functional equation (4.1 ) is a separable equation 
in the sense that it can be separated into two distinct equations respectively 
for G(n, 1, y) and for F(n, x). In order to achieve this separation, we intro- 
duce a separation constant ct which is taken to be ct = F(n, 1/2). T o  guaran- 
tee the positivity of the measure, we have the condition that 0 < ~ < 1. 

By subst i tut ing  x = 1 into  (4.1) and using (4.2), we obtain an equation 
for G(n, 1, y): 

�9 ~['~G(n + 1, 1, 2y),  0 ~< y < �89 (4.3)  G(n, 
l ' Y l = l ( 1 - o O G ( n - 1 ,  1 ,2y-1)+~xG(n+l ,  1, 1), �89 

Note that, for y =  1, (4.3) reduces to a recursion relation for G(n, 1, I): 

G(n, 1, I ) = ( 1 - 0 ~ )  G(n-1 ,  1, 1 ) + ~ G ( n +  1, 1, 1) (4.4) 

which admits a solution depending 
boundary conditions. 

The equation corresponding to 
(4.]) (4.3): 

on two parameters to be fixed by 

F can also be derived from Eqs. 

, f0cF(n-  1, 2x), 
re)= 

F(n,.  ~ (1 --co) F(n + 1, 2 x -  1) + ct, 
04x<�89 

(4.5) 
� 8 9  

For instance, the first relation of (4.5) is deduced from the first relation of 
(4.1) by using the condition for the product measure (4.2) and Eq. (4.3) for 
G(n, 1, y), for y < 1/2, 

G(n, x, y) = G(n, 1, y) F(n, x) 

=~G(n + 1, 1, 2y) F(n, x) 

= G(n + 1, x/Z, 2y) 

= G(n + 1, 1, 23:) F(n + 1, x/2) 

and x by 2x, the first relation of (4.5), F ( n , x ) =  Replacing n by n - 1  
0cF(n -- 1, 2x), follows. 



Nonequilibrium Stationary States 943 

The functional equations (4.3) and (4.5) are similar to the deRham 
equationJ ~9-22~ These equations play a central role in this paper, where our 
goal is to perform their resolution. 

4.2. Equation for the Unstable x Direction 

Equation (4.5) admits a unique continuous solution. Indeed, it is a 
fixed-point equation of the transformation ~ defined by 

o7" . . . .  f e f ( n  + 1, 2x), 
a l J t n ,  x ) =  ~(1 - - o O f ( n - -  1, 2x-- 1) +~x, 

O~<x<�89 
(4.6) 

�89 

Since 

119-~ f -  ~q~ gll ~ sup  I#~f(n,x)-~~g(n,x)l~llf-glJ (4 .7)  
, ," N, 0 ~'y ~ 11 

with ~=max{e ,  l - e }  <1,  the transformation is contractive and, as a 
result, its fixed point exists and is unique. Moreover, the transformation 
keeps the continuity for functions such that f ( n ,  1 ) =  1, i.e., the continuity 
of f and the condition f(n, 1)= 1 implies the continuity of ~ f  Accor- 
dingly, the fixed point of ~ can be uniformly approximated by a sequence 
of continuous functions and is also continuous. 

Equation (4.5) does not depend explicitly on the cell index n, so that 
the cumulative function along the unstable direction F(n, x) is given by 

F ( n , x ) =  f~,(x) (4.8) 

where the function f= is defined as the solution of the deRham equation ~t91 

~ef~,(2x), 
f ~ ( x )  = {.( 1 - o~) f~,(2x - 1 ) + e, 

O~<x<�89 
I . (4 .9)  
~<.x ~< 1 

Such solutions correspond to a measure which can be referred to as 
homogeneous stationary states. In contrast, there also exist stationary 
states which are not homogeneous if separation constants ~,, are used 
which depend "on the cell index n. We do not consider here these 
inhomogeneous stationary states. 

As studied in refs. 19 and 20, the solution of (4.9) for ~4  = 1/2 is a 
Lebesgue singular function, i.e., a monotonically increasing continuous 
function with zero derivatives almost everywhere but nondifferentiable on 
a dense set of points. About the properties of the function f~, see also 
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refs. 23 and 24. However, in the limit ~ =  1/2, the solution becomes 
fl/2(x) = x, which is differentiable. In this case, the distribution is uniform 
along the unstable x direction. 

4.3. Equation Along the Stable y Direction 

We now turn to the other functional equation (4.3), which concerns 
the cumulative function G(n, 1, y) along the stable y direction. This equa- 
tion is similar to Eq. (4.5) except that it admits a unique continuous solu- 
tion for several possible values of the sequence {G(n, 1, 1)}. According to 
the value of the parameter ct, two cases should be distinguished: 

(a)  o ~ 1 / 2 ,  0 < o < 1 .  In this case, Eq.(4.4) gives 

G(n, 1, 1 )=Ai  +A2 (4.10) 

where A~ and A2 are constants to be determined by the boundary condi- 
tions. By substituting (4.10) into (4.3) and by assuming that G(n, 1, 3') 
depends on the cell coordinate n in the same way as (4.10), we obain the 
cumulative function along the y direction 

G(n, l, y)= A, (~-~-)"f  ,_~(y) + A2f~(y) 

The cumulative function over the whole phase space is thus given by 

1 G(n, x, y) =f~(x)  G(n, 1, y) =f~(x)  A 1 f l  -~(Y) + A,_f~(y) (4.11 ) 

The intercell distribution is exponential with respect to the cell coordinate 
[cf. Eq. (4.10)], while the intracell distribution is singular since it is 
expressed by the Lebesgue singular function f~. The inter- and intracell dis- 
tributions are depicted in Figs. 2a and 2b-2c, respectively. 

(b)  a =  1[2. In this case, Eq. (4.4) gives 

G(n, 1, 1 ) = n B  l + B  2 (4.12) 

where B~ and B_, are constants to be fixed here also by the boundary condi- 
tions. In similarity with the resolution of the previous case, we substitute 
Eq. (4.12) into (4.3) and, by assuming that G(n, 1, y) depends on the cell 
coordinate 17 in the same way as (4.12), we finally obtain the cumulative 
function over the whole phase space as 

G(n, x, y) =xG(n,  1, y)=x{B~[ny+ T(y)] +B2y}  (4.13) 
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Fig. 2. For c~=2/5 q: 1/2, cumulative function (4.11) of a non-Fickian nonequilibrium 
stationary state: (a) intercell distribution given by G(n, 1, 1) = (3/2)"+ 1; (b) intracell distribu- 
tion along the x axis (unstable direction) given by G(n, x, 1 ) = [-(3/2)" + 1 ] f2/5(x) with n = 5; 
(c) intraceU distribution along the y axis (stable direction) given by G(n, l , y ) =  
(3/2)" f3/5(Y) + f2/s(Y) with n = 5 .  
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Fig. 3. For ~ =  1/2, cumulative function (4.13) o f a  Fickian nonequilibrium stationary state: 
(a) intercell distribution given by G(n, 1, 1 )=n ;  (b) intracell distribution along the x axis 
(unstable direction) given by G(n, x, 1)= nx with n = 5; (c) intracell distribution along the y 
axis (stable direction) given by G(n, I, y ) =  ny + T(y) with n = 5. 
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Fig. 4. The Takagi function T(y) and some of its self-similar parts. 

where T(y)  obeys the following functional equation: 

~ ~ T(2y) + y, 
T(y) = ( i T ( 2 y  - l ) +  1 --y,  

O~<y<�89 
(4.14) 

� 8 9  

We remark that the intercell distribution here is linear with respect to the 
cell coordinates [cf. (4.12)]. On the other hand, the intracell distribution 
is also linear along the unstable x direction, but it is singular in the stable 
y direction. The inter- and intracell distributions are depicted in Figs. 3a 
and 3b-3c, respectively. The singularity of the distribution is due to the 
function T(y) ,  which was first introduced by Takagi t25~ as a pathological 
example of a continuous function without finite derivatives everywhere and 
which is known as the Takagi function. The Takagi function is shown in 
Fig. 4. The function presents a self-similarity: The parts enclosed by rec- 
tangles are similar to the whole function. This self-similarity is at the very 
origin of its singularity. The properties of the Takagi function and of 
related functions have been extensively investigated by Hata and 
Yamaguti.~20"2~ 

4.4. The Ef fect  of T ime Reversal 

After the previous construction of the homogeneous stationary states, 
we discuss the consequences of time-reversal symmetry. Since the multi- 
baker map B is symmetric under time reversal, the time-reversal operation 
transforms stationary states into other stationary states. Accordingly, we 
get the following results. 
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(c) 
tion (7~(n, x, y) of the time-reversed state is given by 

G,~(n, x, y) - ,u( I{  [0, x) • l-0, y)}.) 

- - /~({(1-y,  1] x ( 1 - x ,  1]},,) 

=G(n, 1, 1)+ G(n, 1 - y ,  l - x )  

-G(n, l - y ,  1 ) -G(n ,  1, l - x )  

= [1 -f~(1 - y)] A, [1--f l_~(1 --x)]  

+A2[1 -- f,,( 1 - x ) ] )  

= f,-~(Y) [ A, ( ~ ) " f , , ( x )  + Azf,-.(x) 1 

Time Reversal  of  o ~ 1/2, 0 < o < 1. The cumulative func- 

(4.15) 

where we have used the following relation, which is easily derived from the 
deRham equation (4.9): 

f ~ ( 1 - x )  +f,_~(x) = 1 (4.16) 

The intercell distribution of the reversed state (4.15) is identical with the 
original one. Indeed, comparing (4.15) with (4.11), one finds that the 
n-dependent part is invariant under the time-reversal operation. Moreover, 
the n-independent part belongs to the same class as the original one, since 
they are related by the parameter change ct ~ 1 -  ct. Therefore, the time- 
reversal operation does not produce stationary states of a new type in this 
case. 

(d) Time Reversal  of  o = 1 / 2 .  Because of the property 
T( 1 - x ) =  T(x), the cumulative function (7,/2(n, x, y) of the time-reversed 
state is given by 

G,/,_(n, x, y)= y{B , [nx-  T(x)] + B_,x} (4.17) 

for which the intercell distribution is here also identical with the original 
one. However, the original distribution (4.13) is regular in the unstable x 
direction and singular in the stable y direction, although the time-reversed 
state (4.17) is singular in the unstable x direction and regular in the stable 
y direction. Therefore, Eq. (4.17) defines a new stationary state. 
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4.5. Symbolic Dynamics, Markov Chain, and the KS Entropy 

Here, we establish a symbolic dynamics for the multibaker and the 
isomorphism With a Markov chain, which allows us to calculate the KS 
entropy of the stationary states. The multibaker map B together with a 
measure r determined by Eqs. (4.3) and (4.5) is isomorphic to a 
probabilistic Markov chain in the sense of OrnsteinJ 26J The isomorphism 
is induced from the following symbolic representation. A bilateral sequence 
co = { co,,} _ ~ <,, < +~ of integers co,, is associated to each point p = (n, x, y) 
of the phase space in such a way that co,, = k if and only if B"p belongs to 
the k th  unit square. In this symbolic representation, the map B acts as a 
left shift. The measure r naturally induces a shift-invariant Markov 
measure /~s on the space of symbolic sequences. Indeed, the measure 
of a cylindrical set corresponding to a finite sequence o3= 
(CO_M, CO--M+ ~ ..... CON) of length N +  M +  1 is given by 

u~(~) s co = ] ' / a (  - - M '  CO - - M + ]  . . . . .  O-)N) 

= G(co_ M, 1, 1)P~_M,O_M+,P,o_M+,,~_U+2'''P,oN_~,o~ (4.18) 

where G(co_g, 1, 1) is the measure of the (o_mth unit square and the 
transition probability Pu is defined as 

I 
ce, i = j + l  

Po.= 1-or i = j -  1 
(0 ,  otherwise 

(4.19) 

Details of the proof are given in Appendix A. Its KS entropy hKs(B, t~) is 
then given by (e.g., ref. 27; see also ref. 6) 

hKs(B, cG) = lim - - ~ " ~ M _ N ~ _ , j G ( i  , 1, 1) P~jln P o. 
N . M ~  +o'b~ ~ M _N G( i, I, 1 ) 

= -[cr In cr +(1 - e ) l n ( 1  -0r (4.20) 

where the denominator ~ -g  Gti 1, 1) is introduced in order to nor- Z . . ~ i = - - N  ~, ' 

realize the measure G( i, 1, 1). 
The entropy of the time-reversed s t a te / i  s is calculated in two steps. 

First, the inverse transformation B - ]  with the time-reversed state /Y~ is 
isomorphic to the multibaker map B with the original state r via the time- 
reversal operation I: B - ~ = I B L  /~=I#~.  Thus, their entropies are the 
same(27): hKs(B-J, fi,,)=hKs(B, it~,). Moreover, since the entropy of the 

822/81/5-6-6 
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map B - '  is proportional to the absolute value of /,(27) h K s ( B - ' , f i . ) =  
It[ hKs(B- ' , f i . ) ,  we have 

hKs(B,/Y~) = I-1l hKs(B-l ,  fi~) 

= hKs(B , ~ )  

= - [ 0 ~ I n ~ + ( 1 - ~ ) l n ( 1 - e ) ]  (4.21) 

On the other hand, the Lyapunov exponent of the multibaker map B is 
equal to 2 = In 2. The equality between the KS entropy and the Lyapunov 
exponent, i.e., Pesin's equality, is therefore obtained only when 0r I/2, 
where the KS entropy (4.21) reaches its maximum. However, we remark 
that the invariant measures we construct are all different from the equi- 
librium invariant measure, which is the Lebesgue measure 
Geq(n, x, y) = xy. One of the main differences lies in the singular character 
of the measures p~. Before closing this section, we comment on an impor- 
tant implication of this aspect. 

Since the cumulative function is composed of singular functions such 
asf~ and the Takagi function (except in the case where ~ = 1/2 and B~ -- 0), 
the corresponding invariant measures are not absolutely continuous with 
respect to the Lebesgue measure. As a consequence, they cannot be 
expressed in terms of density functions p(n, x, y): 

G(n, x, y) :/: dx' dy' p(n, "' y' x ,  ) (4.22) 

Therefore, it was essential to consider the time evolution of the measure 
directly represented by its cumulative function rather than by its density 
function, in contrast with conventional treatments of statistical mechanics. 
According to Mandelbrot, self-similar and singular functions like the 
Takagi function are referred to as fractals. In this respect, an important 
implication of our results is that nonequilibrium stationary states of 
mechanical systems have to be described in terms of singular measures. 
Indeed, the above rigorous construction of nonequilibrium stationary 
states for the multibaker provides a counterexample to the current assump- 
tion that nonequilibrium stationary states can be described by density func- 
tions. This assumption is known to hold for stochastic descriptions of non- 
equilibrium phenomena based on a kinetic equation like the Fokker -  
Planck equation. However, the above result shows that this assumption 
cannot hold in general and, in particular, at the microscopic level of the 
Liouvillian dynamics. 
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5. FLOW IN STATIONARY STATES, FICK LAW, AND 
ANTI -F ICK LAW 

We consider the flow of the uniform stationary states obtained in the 
previous section. The flow of particles across the boundary between the nth 
and (n + 1 )th unit squares can be defined in the following way. Under the 
multibaker map B, the half-square [ 1/2, 1)x [0, 1) in the nth unit square 
moves to the right and the half-square [0, 1/2)x [0, 1) in the (n + 1)th unit 
square moves to the left. Thus, the flow J,,I,,+~ from left to right at the 
n-(n + 1 ) boundary is given by (cf. Fig. 5) 

J,,i,,+~ =/t({ [�89 1)x [0, 1)},,)-,u({ [0, !)2 x [0, 1)},,+,) 

=G(n,  I, I ) - O ( n ,  �89 l ) - O ( n +  I, �89 I) (5.1) 

We apply this formula to the three cases which have been previously dis- 
tinguished. 

(a)  a~I/2, 0 < a < 1 .  The flow corresponding to Eq.(4.10) is 
therefore 

J,,l,+l=(l-~)G(n,l, 1)-o~G(n+l,l,l)=(l-2oOA2 (5.2) 

In this case, the flow is due to the term of (4.10) which is independent of 
the cell coordinate n. This part of the measure gives a weight ~A2 to the 
left-hand half of each cell and a weight ( I - c ( )  A,_ to the right-hand half. 
One iteration of the rnultibaker map induces a left-to-right flow of 
( I - ~ ) A 2  and a right-to-left flow of ~A 2, and as a result, a net flow of 
( I - 2 ~ )  A_, from left to right. In other words, the difference of the weights 
of the half-cells is at the origin of the flow. In this sense, the flow (5.2) 
corresponds to a ballistic motion. On the contrary, the term of (4.10) 
which depends on the cell coordinate n does not contribute to the net flow. 

n th cell (n+l) th cell 

Fig. 5. The flow J,,I,,+ ~ induced by the multibaker and given by Eq. (5.1). 
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This can be regarded as a consequence of the cancellation between the 
ballistic and diffusive flows. Indeed, Eq. (5.2) can be rewritten as 

J,,I,,+' =(1 -2cx) 
G(n, I, 1 ) + G ( n +  1, 1, 1) 

1 
--~ [ G ( n +  1, 1, 1 ) - G ( n ,  1, 1)] (5.3) 

z 

which is a sum of the ballistic flow (the first term) and of the diffusive flow 
(the second term). These two flows cancel each other for the n-dependent 
term of (4.10). On the other hand, the n-independent term of (4.10) 
generates only the ballistic flow, but not the diffusive flow. 

(b)  a =  1/2. On the other hand, the distribution (4.12) gives the 
flow 

B 1 1 
J,,I-+l = ---~-= --~ [ G ( n +  1, 1, 1 ) - G ( n ,  1, 1)] (5.4) 

Contrary to the previous case, the flow is here due to the nonuniformity of 
the distribution, i.e., to the term of (4.12) which depends on the cell coor- 
dinate n. The flow is here proportional to the gradient G(n + I, 1, 1 ) -  
G(n, 1, 1) with a negative constant -1 /2 .  By the same arguments as in 
refs. 6-9, one can easily see that this constant gives the diffusion coefficient 
D = 1/2 of the multibaker map B. Therefore, the relation (5.4) is nothing 
but Fick's law: 

J , l ,+ l  = --D[G(n + I, 1, 1 ) -  G(n, 1, 1)] (5.5) 

so that diffusion is at the origin of the flow. 

(c)  Time Reversal of ( ]=  1/2. Although the intercell distribu- 
tion of the time-reversed state (4.17) is the same as for the original state 
(4.13) [i.e., is equal to (4.12)], the flow given by (5.1) is different for the 
time-reversed state because of the term with the Takagi function, so that an 
anti-Fick law appears: 

Z,I,,+I = l O l  =/[a l /2( l l 'q-1 ,  1, 1)--Gl/2(n , l, 1)] 

=D[(Tj/z(n + 1, 1, 1 ) - Gl/2(n, 1, 1 )] (5.6) 
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where the flow is positively proportional to the concentration difference. It 
is important to note the role of the intracell distribution in the derivation 
of this result, which shall be further discussed in the conclusions. 

These and the previous results imply that the multibaker map admits 
uncountably many stationary states for a boundary condition imposed at the 
level of the intercell distribution. Indeed, uncountably many distributions 
are possible if we specify two numbers like G(0, 1, 1) and G(N, 1, 1) at both 
ends of a chain of length N, or the constants Al and A2 in (4.11), or B~ 
and B 2 in (4.13). Such boundary conditions may be considered as coarse- 
grained boundary conditions in which only an averaged value is imposed 
on the distribution. However, as in the case of several dynamical 
systems, ~lS"16"zS"z91 every one of these measures is not physically realizable. 
Several criteria have been proposed in order to select the physical 
measures t15"~6~ such as the Kolmogorov condition of maximal KS entropy 
for uniformly hyperbolic systems and the SRB condition of extremum of 
Ruelle's topological pressure for nonuniformly hyperbolic systems. In 
closed and finite systems, the SRB condition implies Pesin's equality that 

hKs = Y'. (positive Lyapunov exponents) (5.7) 

In closed and finite systems, the previous condition selects a unique 
invariant measure. In the context of open and infinite systems, we observe 
that Pesin's equality is satisfied by two stationary states, one obeying the 
Fick law and the other one obeying the anti-Fick law: hKs(B,t~l/2)= 
hKs(B, fil/2)=ln 2 [cf. Eqs. (4.20) and (4.21)]. Accordingly, the lone Pesin 
equality does not guarantee the unicity of the invariant measure in the con- 
text of open and infinite systems we describe here. In order to overcome 
this difficulty and to select the physical measure, the time evolution of an 
open multibaker chain of scattering type is studied in the next section, 
where we consider fine-grained boundary conditions in which the 
cumulative function is completely specified for all incoming trajectories at 
both ends of the chain. 

6. T IME EVOLUTION OF M U L T I B A K E R  CHAIN  UNDER 
FIXED B O U N D A R Y  C O N D I T I O N S  

6.1. The Map 

The map B' to be considered consists of a multibaker chain of length 
N, both ends of which are connected with a simple shift map modeling free 
motion (Fig. 6): 



954 Tasaki and Gaspard 

I( ) 1 Y 0~<x<~,  17--1,2x,~ , 

B'(n,x,y)=~(n+l,2x_ I'Y+I'~TJ' ~ < x < l ,  
l <~n<~N--1 (6.1a) 

I ( n -  1, x, y), 0 ~<x<~, 

n'(,,, x, y, = (.( ,, + l, z-<- l '  Y + I ' ~ T J '  21- ~ x < 1' 
n=O, --1 (6.1b) 

i( 1 n -  1, 2x, , 0~<x<~,  

B'(n, x, y) = 1 

t (n + I, x, y), ~ < x < l ,  
n =N,  N +  1 (6.1c) 

I 1 
(n-- 1, x, y), O~<x<~, 

B'(n, x, y)= 1 

t (n+  1, x, y), ~ < x < l ,  
n-N< - 2 o r n > ~ N + 2  (6.1d) 

The first line corresponds to the multibaker transformation in the finite 
chain 1 ~<n~<N-1, where the motion is dynamically unstable with a 
positive Lyapunov exponent In 2 and where transport occurs by deter- 
ministic diffusion. The fourth line models a free motion of particles trans- 
ported with velocities __ 1 either to the left or to the right. The second and 
third lines define the way by which the finite multibaker chain is coupled 
to the ingoing and outgoing exit channels. This system is of scattering 
type because particles are allowed to enter and exit the scattering region 
1 ~< n ~< N -  1 where the motion is nontrivial. In the limit where N --* oo and 
the origin n = 0  is removed to -oo ,  the infinite multibaker map B is 
recovered. 

Fig. 6. Action of the open multibaker map B' defined by Eq. (6.1) on its phase space com- 
posed of an infinite chain of squares. 
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6.2. Equation of Mot ion  

We now study the Liouvillian dynamics of this system in the same way 
as we treated the infinite chain in the previous sections. Since the inverse 
of B' is 

I I -1 ,  T ,  

{ (n+l , .~ ,y) ,  0~<x<~, 

B' -  J(n, x, y) -- 1 
(n - l, x, y), ~ < x < l ,  

O~<n~<N 

(6.2) 

n<~ -1  orn>~N+ 1 

the equation of motion for the cumulative function G,(n ,x ,y)= 
p,({ [0, x)• [0, y)},,) with p, a measure at time t is given by 

G,+ I(n, x, y ) =  

( ) G, n + l ,  x 2y , 0~<y<~,  
2' 

G, n + l , 2 , 1  +G,  n - l , ~ - - - ,  

( ) 1 1 2 y - I  ~ < y ~ l  - G ,  n -  1,~, 

(6.3a) 

for 0 <~ n ~< N, and 

G,+l(n, x, y) 

t 
" 1 
G,(n+ 1, x, y), 0 ~ x < ~  

.Gt n + l , - ~ , y  + G , ( n - l , x , y ) - G ,  n - 1 , - ~ , y  , -~<~x<~l 

(6.3b) 

forn~<--1 or n~>N+l .  
We propose a gedanken experiment where a flow is induced across 

the system by imposing two different concentrations at both ends of the 
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system. Accordingly, we assume at the initial time two ingoing flows of par- 
ticles from the left- and right-hand ends of the chain with uniform concen- 
trations p_ and p +, respectively: 

Go(n,x, y ) = p _  xy, n<~ - 1  
(6.4) 

Go(n, x, y)  = p + xy, n ~> N +  1 

Then, the equation of motion (6.3) can be further simplified. As easily 
seen, (6.3b) and (6.4) lead to 

Gt(n , x,  y )  - Gt(n , �89 y )  = p _ ( x  - �89 y ,  

Gt(n, x, y) = p + xy, 

l ~ x ~ � 8 9  n ~ - I  

0 ~ x ~ � 8 9  n ~ N + l  
(6.5) 

Thus, for n = 0 and n = N, we have 

I x 
G, I ,~ ,1  + p  x y -  , ~<~y<~l 

(6.6a) 

and 

I p+xy ,  0 ~ < y < ~  

l x G / x + l  G , + , ( N , x , y ) = ~ p + - ~ +  , ~ N -  1, ----~, 2 y -  1) 

G 1 1 - , ( N - l , ~ , 2 y - 1 ) ,  ~<~y<~l 

(6.6b) 

We note that the set formed by Eqs. (6.3a) with n = 1, 2,..., N -  1 together 
with Eqs. (6.6) is a closed system of equations for the unknown functions 
G,(n, x, y) (n = O, 1 ..... N). 

6.3. Asymptotic State 

Provided that the initial state Go is twice continuously differentiable in 
x, we can show that the solution of the equations of motion (6.3a) 
and (6.6) asymptotically approaches the stationary state with a constant 
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intercell gradient and that this solution obeys Fick's law (cf. the next 
subsection): 

~P+-P-[(n+I)~-~ + T, ,(y)]+p y}  Goo(n,x, y )=  x ~ y _ (6.7) 

J,,I-+l = 1 p + - - p _  1 
2 N + 2  ~ - - Z  -G~n+l'l'l--G'~n'l'l)-:[ ( ) ( ] (6.8) 

where {T.(y)} are incomplete Takagi functions defined by the multiple 
functional equation 

~T ,+~(2y )+y ,  0 ~ < y < I  (6.9) 
T " ( Y ) = ~ i T , _ , ( 2 y - 1 ) + l - y ,  �89 

where 0 ~< n ~< N with conventions T t(y ) = T~r ~(y) - O. As discussed in 
Appendix B, the functional equation (6.9) admits a unique continuous 
solution satisfying 

max IIT, II~<~ 1 (6.10) 
O<<.n<.N 

with 

liT, lifo = sup IT,,(y)I 
O~<x~<l 
O~<y~<l 

In addition, we have for k=max(n ,  N - n ) ,  
_< t!~k-I liT,,- T[]~ --~, 2J (6.11) 

where T is the complete Takagi function, solution of Eq. (4.14). The 
inequality (6.11 ) implies that, if the lattice site n is far from the ends of the 
chain, the incomplete Takagi function T,, is getting close to the Takagi 
function and the stationary state (4.13) obtained in Section 4 is recovered 
from the middle part of the asymptotic state (6.7) in the limit N ~  ~ .  The 
incomplete Takagi functions {T,,(y)} for a chain of length N =  10 are 
shown in Fig. 7, where we observe that the distribution Ts(y) at the middle 
site practically coincides with the Takagi function shown in Fig. 4. 

The fact that the state G~ obeys Fick's law immediately follows from 
(5.1): 

J,,l,,+l=G~o(n,l, 1 ) - G o o ( n , ~ , l ) - G o ~ ( n + l , - ~ ,  

l p + - - p _  1 
2 N + 2  = _ 2 t G ~ , n + l , l ,  1,_G~o,n,l ,  1, t , t ~l 
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We reach the conclusion that the fine-grained boundary conditions 
considered in this section have uniquely selected the physical state 
obeying Fick's law out of the uncountable set of states obtained in the 
previous section where only coarse-grained boundary conditions were 
imposed. 

0.8 

0 
0 

i i i i i i i ! i 

(a) 

I I I I I I I I I 

Y 

0.8 

0 
0 

i i t i i i i i i 

(b) 

I I I I I I I I I 

Y 

Fig. 7. The incomplete Takagi functions { T , , ( y ) }  given by Eqs. (6.9) along an open multi- 
baker chain of length N =  10: (a) n = O ;  (b) n =  I; (c) n = 2 ;  (d) n = 3 ;  (e) n = 4 ;  (f) n = 5 .  On 
the right-hand side of the chain, the same functions are obtained up to the reflection y --* 1 - y 
because of the symmetry T, , (y )  = T,v_, , (  1 - y) .  
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Fig, 7 (continued) 
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Fig. 7 (conthlued) 

6.4. Convergence to the Asymptot ic  State 

In this subsection, we show how the time evolution is responsible for 
the convergence of G, to Go~ for t - ,  +oo for initial conditions Go which 
are twice differentiable with respect to x. Here we outline the steps of the 
proof which have a well-defined physical interpretation, whereas the details 
are presented in Appendix C. 

6.4.1. Uniformizat ion of the Distr ibution Along the 
Unstable Direction. First, we observe that the forward time evolution 
given by Eqs. (6.3a) and (6.6) keeps the smoothness in the unstable x direc- 
tion, i.e., if G, is twice continuously differentiable with respect to x, G,+I 
is also a twice continuously differentiable function of x. Then, as shown in 
Appendix C, the second-order derivative O~,.G, of the cumulative function 
obeys the inequality [cf. (C.2)] 

with 

rl0~.G,II ~ (~)' II0.~.G011 (6.12) 

IIO~,.G,II =- max sup la2,.G,(n, x, Y)[ (6.13) 
O ~ < n ~ < N  O ~ < x ~ ]  

0 ~ .l' -.~< l 

and thus the second-order derivative 02,.G, tends to zero asymptotically: 
c3~G, ~ 0 (t--* +or).  This process corresponds to the uniformization of the 
distribution along the unstable direction. 
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6.4.2. Achievement  of the Uni form-Grad ient  Intercell Dis- 
tr ibut ion via Diffusion. We rewrite 

G,(n, x, y )  = xG,(n, l, y)  +x6 , (n ,  x, y) (6.14a) 

where 

1 dx' dx" O-,.,,G,(n, x , y)  6,07, x ,  y )  _ x 

-- dx' dx" O~,,G,(n, x ,  y )  (6.14b) 

and, as shown in Appendix C, it vanishes exponentially for t ~ +oo [cf. 
(c.4)]: 

16,(n, x, Y)l ~< (�89 II0].Goll (6.14c) 

By setting x =  y =  1 in (6.3a) and (6.6) and using (6.14a), we get, for 
0~<n~<N, 

G,+l (n , l ,  1) = �89  l, l, l ) + G,(n + l, l, 1 ) ]+ lh (n)  (6.15a) 

where we use the convention G , ( -  1, 1, 1 ) = p _ ,  G , ( N +  1, 1, 1 ) = p + ,  and 
the last term q,(n) is a function of 6, satisfying [cf. (C.6)] 

pl,(n)[ ~ (�89 II0].Goll (6.15b) 

Equation (6.15a) is precisely the random walk equation with a damped 
"noise" r/,. 

As shown in Appendix C, the solution of (6.15a) is 

G,(n, 1,1)-[P+N+2-P-(n+l)+P-I  

2 ~ J  /'17+ 1 "~ = /_~ sin ~ - ~ - ~  7trnj 
N+2, ,=I  

~ ' - ~ j  /~o(m)+ ~ 0,_.,(m)] (6.16a) k c~ 
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where O,(m) and /~o(m) are the Fourier transforms, respectively, of the 
"noise" and of the initial deviation of G,(n, 1, 1 ) from the uniform-gradient 
distribution: 

~. { / n §  ) 
0,(m) = sin \ ~ - - ~  nm ii,(n ) 

n ~ 0  

/~o(m) ,~=oSm\~-~---~nm Go(n, 1, 1 ) -  pN+2-p- 

(6.16b) 

( n + l ) + p _ ] }  (6.16c) 

As seen from (6.16), the intercell distribution G,(n, 1, 1) asymptotically 
approaches the uniform-gradient state: 

G,(n, 1, 1 ) - [  p+ - P -  [ ~V--+2 ( n + l ) + p _ ]  ~<KT~ (6.17a) 

where K is a positive constant depending on the initial deviation as well as 
on the initial value of the second-order derivative of the cumulative func- 
tion 02,.Go [cf. (C.15)], and the decay rate 70 is given by 

7s 
yo = cos ~ - - ~  (<1 )  (6.17b) 

We notice that the decay rate Yo coincides with the slowest decay rate via 
diffusion for the finite chain of length N + 2. Hence, we conclude that the 
approach of the intercell distribution to the uniform-gradient state is due 
to the diffusion process. 

6.4.3. Achievement  of the Distr ibution in the Stable 
Direction. We turn to the full equation of motion (6.3a) and (6.6). By 
substituting (6.14a) into (6.3a) and (6.6), and setting x =  1 in the results, 
we obtain 

G,+l(n, 1, y) = ~--_,G,(11, 1, y)+6Gt(ll, 1, y)+~t(n, y) (6.18a) 

where the transformation 3-2 is defined by 

f ~ f(n + 1, 2y), 
J,_f(n, y) -- 

~ f ( n _ l , 2 y _ l ) + P + - P  
2(N + 2-~ 
- -  ( n + 2 ) +  p -  

2 '  

1 
O ~ y < ~  

1 
~ <  y~< 1 

(6.18b) 
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for 0 <~ n ~< N with f (  - 1, y) = p _ y and f ( N  + 1, y) = p + y. The deviation 
3G,(n, 1, y) is related to the deviation of the intercell distribution with 
respect to the uniform-gradient state and decays via diffusion [cf. (C.18)]: 

K 
16G,(n, 1, y)[ ~<-~- y~ (6.18c) 

On the other hand, the "noise" ~, arising from the nonuniformity of the 
distribution along the unstable direction also decays exponentially, but at 
the faster rate [cf. (C.19)] 

I~,(n, Y)I ~ (�89 II0].Go[I (6.180) 

determined by the Lyapunov exponent 2 = In 2. 
Since the map ~_ is a contraction 

I I ~ f -  :2  gll ~< �89 II f -  gll (6.19) 

it admits a unique fixed point fg~(n, y). The deviation of G,(n, 1, y) from 
~o~(n, y) obeys 

IIG,(., 1, . )-fg~ll  ~< II~,_a,_ 1(-, 1, . ) -  ~ _ . 1 [  + 1166,-iii + I1~,- 111 

1 
~<~ LIG,_,(-, 1, ")-~J~ll + g'~'~ -1 

1 ' K , , _  1 ~< ~ I IGo( . ,1 , . ) - f#~l l+  Yo 
s = O  

~< ~ [[Go(., 1, .) - f#o~ll + K' 2 y o -  1 (6.20) 

where we used Eqs. (6.18c), (6.18d), and (6.19), the fact that ),o > 1/2, and 
the positive constant 

K 
K' = ~ - +  II0;Goll (6.21) 

The inequality (6.20) implies the convergence of the cumulative function 
G,(n, x, y) to xff~(n, y) for t --+ ~ :  

IG,(n, x, y) - x~.An, Y)I 

~< IIG,(., 1, ' ) - ~ 1 1  + I~,(n,x, Y)I 

~< Ilao(', 1, . ) - fgo~ll+K'  2?,; 
2 y o -  1 

+ II0.~.Goll --+ 0, t ---, + ~  (6.22) 
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Straightforward calculations show that the fixed point ffoo(n, y) of the con- 
traction ~_~ is given by 

fqo~(n, y) P + - P -  ~V-~ [ ( n + l ) y +  T , ( y ) ] + p _ y  

where the T,,(y) are the incomplete Takagi functions T,,(y), the solution of 
Eq. (6.9), whereupon the asymptotic state x~o~(n, y) is equal to G~ given 
by (6.7). This completes the proof of the convergence of Gt to Go~. 

6.5. S u m m a r y  

In summary, we showed that, for t ~ + oo, the distribution approaches 
the stationary state with a uniform gradient, which obeys Fick's law. As 
time evolves, the distribution first becomes uniform along the unstable 
direction on a short kinetic time scale given by the inverse of the Lyapunov 
exponent (corresponding to a decay rate of In 2). Thereafter, the linear con- 
centration profile is achieved through diffusion on a longer hydrodynamic 
time scale given by the rate of escape out of the finite chain [ corresponding 
to the decay rate - I n  cos(n/(N+ 2))]. 

It should be noticed that the other stationary states, which are 
singular in the unstable direction, could also be realized in principle as 
asymptotic states if appropriate boundary and initial conditions are 
imposed. For example, through the same arguments as in Section 6.4, it 
can shown that the initial condition 

f~o :df=(x')po(n,x',y), O<~n<~N 

Go(n, x, y) = } p  _ f=(x) f=(y), n ~< - 1  (6.23) 

~.p + f~(x) f~(y), n >, N + 1 

where f= is the solution of the deRham equation (4.9) and where the den- 
sity po(n, x, y) is continuously differentiable in x, tends to a stationary dis- 
tribution with the exponential intercell profile (4.11 ) for t ~ oo. As we see 
in (6.23), the initial condition must be singular in the unstable direction in 
order to obtain a stationary distribution, and this fact can be understood 
as follows. The multibaker map B' has a tendency to uniformize the dis- 
tribution along the unstable direction. Therefore, the maintenance of a 
stationary state which is singular in the unstable direction requires the 
self-similarity of the initial states along the unstable direction in order to 
prevent the uniformization. This observation implies that, except for very 
special initial states prepared to be self-similar, almost all initial states 
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converge to the one which is smooth in the unstable direction, and which 
obeys Fick's law. In other words, the Fickian stationary state is stable in 
this sense and we may therefore identify this state as the physical one. 

7. ESCAPE-TIME FUNCTION AND THE INCOMPLETE 
TAKAGI  FUNCTIONS 

As we mentioned earlier, the open multibaker chain is of scattering 
type. Recently, many works have been devoted to chaotic scattering 
systems for which the classical dynamics has chaotic transient motions in 
the scattering region of phase spaceJ 3~ In this context, the trajectories 
which are indefinitely trapped in the scattering region form a so-called frac- 
tal repeller, which is evidenced by constructing the escape-time function. 
This function gives the time taken by the particle to escape from the scat- 
tering region versus its initial condition. The escape time becomes infinite 
on the Cantor set formed by the stable manifolds of the fractal repeller. 

In the present section, we show that there is an interesting relation 
between the derivatives of the incomplete-Takagi-type functions and the 
escape-time function for a finite multibaker chain of length N +  1. The 
escape time r(n, x, y) for a given point (n, x, y) (0 ~<n ~<N) is defined as 
the minimum number of iterations of the multibaker map B for which the 
initial point (n, x, y) is mapped outside of the chain. Let (n,, x,, y , ) -  
B'(n, x, y); we have the defining property that 

O<~n,<~N for O<~t<t(n,x,y) 
(7.1) 

nt = --1 or n, = N +  1 for t = r(n, x, y) 

Clearly, r(n, x, y) = r[B(n, x, y)]  + 1 for 0 ~<n ~<N, and the points in the 
half-square [0, l/2) x [0, 1) of the 0th cell and those in the half-square 
I-1/2, 1)x 1-0, 1) of the Nth cell are mapped out of the chain by one itera- 
tion of B. Therefore, we have 

y + l ' x  
t n +  1, 2 x -  1, T ) +  1, 

r(n, x, y) = 

1, 

1 
0~<x<~,  0 < n < N  

1 
~ < x < l ,  0 < n < N  

1 
0<~x<~ ,  n = 0  

1 
~ < x <  1, n = N  

(7.2) 

822/81/5-6-7 



966 Tasaki and Gaspard 

As easily seen, the escape-time function r is independent of y: z(n, x, y ) =  
r(n, x). We now rewrite (7.2) as an equation for the integrated escape-time 
function: 

R(n, x) -- dx' r(n, x') (7.3) 

which represents the escape time averaged over the set { [0, x) x [0, 1 )}. in 
the nth cell. By simple calculations, we obtain 

~R(n_ -- 1, 2x) +x ,  
R(n, x) 

[�89 - 1, 1) 4- �89 4- 1, 2 x -  1) &x, 
0 ~ x < � 8 9  O ~ n ~ N  
� 8 9  O ~ n ~ N  

(7.4) 

with the boundary conditions R( - I ,  x ) =  R(N+ 1, x) = 0. By setting x = 1, 
we get 

R(n, 1) = �89 -- 1, 1) + 1R(n + 1, 1) + 1 (7.5) 

which, together with R(--1, I ) = R ( N +  l, l ) = 0 ,  leads to the following 
expression for the escape time averaged over the nth cell: 

R(n, 1) = --(n + 1 ) (11-N-  1) (7.6) 

Hence, one can solve the full equation (7.4) by setting 

R(n,x)= - ( n + l ) ( n - N - - 1 ) x + ( 2 n - - N )  7".(x)+S,,(x) (7.7a) 

where the new functions 7".(x) and S.(x) are defined as solutions of the 
following functional equations: 

~'~' L,-,(2x) + x, 
7"(x) = [ i  ~',, + ,(2x-- 1) + 1 - x, 

S.(x) = ~�89 ,(2x) - :F,,_ ,(2x), 
[ k s . +  l(2X - I) + :F.+ l (2X- 1), 

with the convention :F_l(x) = :FN+ I(X) = 0 and S_l(X) = So+ i(x) - O. The 
uniqueness and the continuity of :F.(x) and S.(x) follow from Theorem B 
of Appendix B by setting, respectively, 

w.(x) = ~" Z" T,,_ l(2x), 
(T .  + l ( 2 x -  1), 

0<x<�89 
(7.75) �89 

0<x<~ 
(7.7c) �89 

0~<x<�89 
(7.8a) 

�89 

0~<x<�89 
(7.8b) �89 
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The function 7",, is essentially the incomplete Takagi function T,,: 
/',,(x) = 7',(1 - x )  (7.9) 

As we see from the functional equation (7.7c), the other function S, is also 
of Takagi type. When the site coordinate n is far from the edges, the func- 
tions T,, and S,, converge respectively to the Takagi function T ( 1 - x )  = 
T(x) and to the function S(x) defined by 

 �89 - T(2x) ,  0 < x < �89 
S(:r189 T(2x-I), �89 (7.10) 

As a consequence of the nowhere differentiability of the functions T and S, 
the functions 7',, and S,, have infinite derivatives more frequently when n is 
far from the edges than when n is close to the edges. This property 
corresponds to the existence of many more trapped trajectories inside the 
chain than near the edges. In this respect, the singular nature of the incom- 
plete-Takagi-type functions is closely related to the singularities of the 
escape-time function. 

This fact can also be seen in the Hausdorff measure of the set r of 
phase-space points with infinite escape time, which is formed by the stable 
manifolds of the repeller. Since the multibaker map is uniformly hyperbolic, 
the set ~ is a Cantor set with a single scale and, as shown in Appendix D, 
its Hausdorff dimension D u is [cf. (D.11)] 

in cos[zt/(N + 2)] 
D n = 2 +  (7.11) 

In 2 

The corresponding Hausdorff measure of the intersection of q~ with the kth 
cell { [0, 1 ]2}k depends sinusoidally on the cell coordinate k [cf. (D.12)]: 

(k+ 1 ) 
/ t , ( r  c~ {[0, 1]z}k) oc sin \ N + 2  n (7.12) 

which implies that the trapped trajectories are denser inside the chain than 
near the edges. 

Figure 8 shows the integrated escape-time function R. The escape-time 
function r obtained as the numerical derivative of R is depicted in Fig. 9 
and compared.with the one directly calculated from the trajectories in a 
chain of length N =  10. As seen in Fig. 9, the result of the functional equa- 
tions (7.7) and the direct one agree quite well for small n. For n = 5 at the 
middle of the chain, the escape-time functions obtained from both methods 
oscillate around the average value of ( r )  ~ 36, which agrees well with the 
analytic result (7.6). Indeed, the latter gives ( r )  = R(5, 1)= 36 for N =  10 
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0 0.2 0.4 0.6 0.8 1 

x 

Fig. 8. The integrated escape-time function R(n, x) solution of Eqs. (7.4)-(7.7) along an 
open multibaker chain of length N= 10: (a) at the left-hand end, n=0; (b) in the middle, 
1 1 = 5 .  

and n = 5. However, the agreement between the escape-time functions 
calculated from the two methods deteriorates as the escape time increases. 
Consequently, a discrepancy appears at the level of  the integrated escape- 
time function R(n, x), which, in the direct method, is obtained via numeri- 
cal integration. The discrepancy arises from the very slow convergence of  
the numerical integration due to the singularities of  the escape time dis- 
tribution r(n, x), as explained below. 

First, we consider the singularities of  the escape-time function near a 
single repelling point. Let Xo be this repelling point. Nearby initial points 
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0 

t i 
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0.2 0.4 0.6 0.8 1 
X 
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l0 
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0 0.2 0.4 0.6 0.8 1 

x 

Fig. 9. The escape-time function r(n, x) along an open multibaker chain of length N =  10: 
(a) at the left-hand end, n = 0: (b) in the middle, n = 5. The solid line represents the direct 
calculation by trajectory integration according to the definition given by Eq. (7.1). The dots 
are the results of a numerical differentiation of the function R(n, x) plotted in Fig. 8. 

like x = x o + 6 x  escape from the vicinity of  the repeller Xo at a rate given 
by the Lyapunov exponent 2: x ,  = Xo + 6 x  exp().t). By setting x, - Xo ~ 1, 
the escape time rcs c of  x is thus obtained as r e = = - l n  I X - X o [ / 2 .  The 
escape-time function r(n, x) is expected to behave in a similar way near 
each of  its singularities. On  the other hand, the set of  singularities of  r(n, x) 
is the projection of  the stable manifolds q~ of  the repeller onto the x axis. 
Since q~ is a Cantor  set with the Hausdorff  dimension D H ,  (7.11 ), and takes 
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the form r = Uk{o~ x [0, 1]}k, where o~ is a fractal set in the kth cell, the 
set of singularities of ~(n, x)  is also a Cantor set with the dimension 

In cos[g / (N + 2)] 
d H = D H - - I = I +  in2 (7.13) 

Let us subdivide the interval [0, x]  with a grid of spacing ~ and consider 
the difference eNET between the integral of r and the corresponding 
Riemann sum: 

f: eNET-- ~5 r(n, j6)  -- dx' r(n, x ')  
j = l  

(7.14) 

The error eNE x mainly comes from the intervals involving singularities. For 
each interval involving a singularity Xo, the error e~ can be estimated as 

Uo+'V z --ln I x ' - x 0 l  0 - l n  Ix-x01 6 0 (7.15) 

Since the set of singularities of �9 is a Cantor set with Hausdorff dimension 
dH, the number of intervals involving singularities is of order of 1/~ all. 
Hence, the net error eNET is estimated as 

1 
eNET ~ ~7~ es ~ ~1 -d ,  (7.16) 

which approaches zero very slowly for a vanishing grid spacing 6 ~ 0 and 
is responsible for the aforementioned discrepancy between the functional 
equation approach and the direct trajectory approach. Indeed, when 
N =  I0, the dimension is about d n -~ 1 -0 .05 ,  so that the net error becomes 
eNET~6 0"05, which is about 8NET~0.3 even for 6 =  10 -m. The numerical 
convergence is therefore extremely slow in the integration of such escape- 
time functions. 

8. C O N C L U D I N G  R E M A R K S  

We have shown that, for the multibaker map, nonequilibrium station- 
ary states with flow can be constructed with the aid of singular measures. 
By investigating the time evolution of the distribution for a finite multi- 
baker chain under fixed boundary conditions, the one satisfying Fick's law 
is selected as the physical state. Some remarks are now in order. 
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1. In the phenomenological diffusion equation Of/Ot = D Ozf/Ox 2, the 
decaying mode fq(X) = exp(iqx) and the constant-gradient state f(x) = x are 
related to each other in a simple way: 

(8.l) 

A similar relation holds between the state (4.13) satisfying Fick's law and 
the decay mode of the Frobenius-Perron operator 0 corresponding to the 
Lebesgue invariant measure. As discussed in refs. 7-9, the Frobenius- 
Perron operator /9 acts on the distribution function p(n, x, y) as 

i x l~p(n, x, y) =p[B-l(n, x, y)] = x +  1 1 
( n - l , T ,  2 y - 1  ) ,  ~ < y < l  

(8.2) 

The operator 0 admits a generalized decaying eigendistribution Fq charac- 
terized by a quasimomentum q ( - n / 3  < q < n / 3  or 2~z/3 < q < 4 n / 3 )  t7"12) 
and corresponding to the eigenvalue cos q: 

< A [ Fq > ~ dx inq df~(y) e A*(n, x, y) 
I t  ~ - - 0 9  

(8.3) 

where A is an arbitrary function with bounded variation with respect to y 
and the function f ~  is a solution of the deRham equation (4.9) correspond- 
ing to a complex parameter a =~,1 = exp(iq)/(2 cos q). 

By differentiating (8.3) with respect to q and setting q =0,  we have 

= --i,,f~o Io dX lo dlinf~o(Y)+[ ~qf~q(Y)]q=O) A*(n'x' Y) 

Using f~o(y)=y and the following relation obtained by Hata and 
Yamaguti ~2~ between the function f~ and the Takagi function T(y): 

q=O = ~  f~(Y) ~ ,/2 =iT(y) 
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we obtain the desired relation 

-- i  (A IFq) ~ dx d[ny+ T(y)]A*(n,x, y) 
t~ = - - o z ,  

+ o o  

~{ dG(n, x, y) A*(n, x, y) 
~- ~ '  0 I ] x [ O  1 ]  I 1 =  - - ~  , �9 

where the cumulative function G(n, x, y) is given by (4.13) with B~ = 1 and 
B2=0:  G(n,x,y)=x[ny+T(y)]. This result shows how Fick's non- 
equilibrium stationary states can be directly obtained from the generalized 
spectral decomposition of the Frobenius-Perron operator in terms of its 
Pollicott-Ruelle resonances and the associated eigendistributions. 

2. As shown before, the stationary state satisfying Fick's law is 
expressed in terms of a singular measure. Since the multibaker map is 
ergodic, ~6~ any state described by a density function, i.e., by an absolutely 
continuous measure with respect to the equilibrium Lebesgue measure, 
weakly converges to the equilibrium state and there cannot be any other 
stationary state. Therefore, the description in terms of density functions 
cannot cope with nonequilibrium stationary states. In contrast, our 
approach based on a direct treatment of the cumulative functions shows 
the existence of many nontrivial invariant measures corresponding to non- 
equilibrium stationary states under various boundary conditions. This 
observation suggests, in general, the necessity of singular measures to treat 
nonequilibrium stationary states in reversible and volume-preserving 
dynamical systems and thus the necessity to extend the description of 
dynamical states as we have carried out in the present paper. 

3. This and the next remark concern the relationship between Fick's 
law and the SRB measure. The SRB measure has the property to be an 
ergodic invariant measure which is absolutely continuous with respect to 
the Lebesgue measure along the unstable directionJ ~5"~6~ For a sufficiently 
smooth map defined on a compact phase space, the SRB measure satisfies 
Pesin's equality and is moreover the ergodic invariant measure given by 
time averaging over almost all trajectories. The Fickian invariant state we 
constructed could be regarded as a kind of SRB measure since it is 
expressed by a measure which is absolutely continuous with respect to the 
Lebesgue measure in the unstable x direction [cf. (4.13) and (6.7)-I and 
since it can be obtained, in an open multibaker chain, as an asymptotic 
state starting from an initial state which is absolutely continuous with 
respect to the Lebesgue measure (cf. the discussion in Section 6). However, 
the present situation concerning open and infinite systems differs on the 
following points from the case of closed systems. As discussed at the end 
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of Section 5, there appear two stationary states--the Fickian and the anti- 
Fickian--which both satisfy Pesin's equality. Moreover, for the open multi- 
baker chain discussed in Section 6, different asymptotic states can be 
obtained, depending on the boundary conditions. Therefore, the asymptotic 
states are controlled not only by a dynamics, but also by the boundary 
conditions, as we emphasized. 

4. In dynamical system theory, singular measures have been con- 
sidered in the context of dissipative and, more generally, of nonconser- 
vative systems where contraction of phase space volumes naturally leads to 
the formation of fractal objects where the invariant measure is singular as 
on the Cantor set. Singular measures having a fractal support are also con- 
sidered in chaotic scattering of conservative systems, as is the case in the 
open multibaker chain of Sections 6 and 7. We would like to draw atten- 
tion to the fact that not only is the dynamics of the multibaker conser- 
vative, but the support of the invariant measures p~ we construct and study 
in Sections 3-5 is the plain phase space. In spite of these features, the 
invariant measures ~L~ are singular and belong to a class of measures which 
are intermediate between the measures which are absolutely continuous 
with respect to the Lebesgue measure and the measures supported by a 
fractal. By this property, the invariant measures lt~ differ from the SRB 
measures currently considered in the study of strange attractors. The 
possibility that nonequilibrium stationary states belong to this intermediate 
class of singular invariant measures seems to have been overlooked. Our 
results show that such a possibility is compatible with the conservation of 
volumes in phase space. 

APPENDIX A. SYMBOLIC REPRESENTATION 

Let (o= {co,,} . . . . . . . .  be a bilateral symbolic sequence of integers, 
i.e., co,, E Z .  Let us define a subset [2 of the symbolic sequence space as 

[2 = {co = {co,,} . . . . . . .  : a  . . . . . . .  , :/:0} (A.1) 

where a~j (i, j ~  Z) is a transition matrix: 

a~j :/: 0 (only for i = j - t -  l) (A.2) 

To each firfite sequence c~ = {09,} -~.l<~,,~,v we can associate a cylindri- 
cal set S,~ which is a subset of [2 defined by 

Z ~ = { r  (A.3) 

Then we have the following result. 
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Theorem A. (1) The mapping a from the phase space 
[.J . . . . . . .  {[0,  112}n to the symbolic sequence space t2 defined by 

a:p=(n,x,y)--*co={co,}_oo . . . .  s.t. co,, = k iffB'~o E { [0, 1 ]2} k 

(A.4) 
is bijective. 

(2) For a finite sequence ~h={co,,}_M<.,,<,v (a . . . . .  ~:/:0), the 
measure of the preimage a -  ~L'o~ of a cylindrical set Zo~ with respect to the 
measure/~, defined through the deRham-type equations (4.3) and (4.5) is 
given by 

] / a ( o ' - l ~ v ' o ~  ) = G(CO_M, 1, 1) PW_MO_M+IPo:,_M+t~O_M+.,''' P~o,v_w:,,v (A.5) 

where Pu is the transition probability defined by (4.19). 

(3) The measure /z~ defined through deRham-type equations (4.3) 
and (4.5) induces a measure kt s on the symbolic sequence space/2 via the 
mapping a as 

.uS(Zo~) --,u~,(a-'Zo)) (A.6) 

where o3= {co,}-M<~n<~N is a finite symbolic sequence and Z,~ the corre- 
sponding cylindrical set. Then :t s is a shift-invariant Markov measure on 
t2. Hereafter, we sometimes abbreviate/zs(z~) as/~S(o3). 

Theorem A completes the proof of the isomorphism between the multi- 
baker map and the probabilistic Markov chain. 

To get Theorem A, we need a lemma which can be proved 
straightforwardly by induction: 

k e m m a  A. For a finite sequence o3= {co,,} -M~<,,~<N (M>~0, N>~0, 
a . . . . .  ,4:0), we have (1) 

N 

a-'Z~,= ~ B-"{[0,1]2}o~.={[aN, bu]X[CM, aM]}~o0 (A.Va) 
n = - - M  

with 

and (2) 

1 1 
bu--aN=~-~, dM--CM='~ (A.7b) 

G(coo, 1, d g )  - -  G(coo, 1, CM) 

= G ( C O _ M ,  I, 1) Po~_M,o_M+,P,o_~,+,o~_M+,.... Po~-L~ 

F(coo, blv) - F(coo, aN) = P~o~,P~o,~o,'" Po,~_,o,~ 

(A.8) 
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where G and F are solutions of (4.3) and (4.5), respectively, and Po is 
defined by (4.19). 

Remark .  Strictly speaking, Theorem A and Lemma A hold for a 
map B modified with respect to B such that J~-J{[0, 112}~ becomes a 
closed set. As the two maps are different on a set of p-measure zero 
(a union of countably many lines, where the modified map becomes double 
valued), the difference is not essential. 

Proof of Theorem A. (1) It is enough to show that, for arbitrary 
~o= {o%} . . . .  <o~ef2, the set a-~{co} consists of a unique phase point. 

We shall set 

X,M.N, -= {CO'= {COj} _oo<j<~ el2: O)~=OOj, j=  --M, - M +  l ..... N} (A.9) 

Then clearly 

"~(M',N'} 1:~ "~{M,N) ( M  t >1 M and N' >/N)  (A.10a) 

(~ X(M.~= {CO} (A.10b) 
M = 0  N = 0  

By Lemma A, we have 

a-'Zr = {[aN, bN] x [CM, dM] } ~,o (A.1 la) 

with 

1 1 
bN--aN--2N and dM--CM=~--~ (A.1 lb) 

Then, as a result of (A.10a), we have 

[aN,, bN,] c [aN, bN] (N<~N'), [CM, , dM, ] c [CM, dM] (M <~ M') 
(A.12) 

Equations (A.11b) and (A.12) imply that {[aN, bN]}N=0, t .... and 
{ [CM, dM]} M=0.1.... are sequences of shrinking closed intervals. Therefore, 
there exists a unique point (x~,  yo~)e [0, 1 ]2 such that 

(~ [aN, bN] = {X~}, N [CM, dM] = {y~} (A. 13) 
N = O  M f f i O  
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which lead to the desired result: 

a-'{co} =o-~ s...,~ 
0 M = 0  

~-- f l  f l  0"-- 1,~'(M,N) 
N = 0  M = 0  

= [a~v, bN] x [c~t, dM] 
0 M = 0 u)O 

= {(~Oo, x~, y~)} 

(2) For M~>0 and N>~0, we have from Lemma A 

, ; - ' z ~  = {JAN, b~] x [cM, dM]}~0 

Then, the condition of product measure (4.2) and (2) of Lemma A give the 
desired result: 

l t~(a-'Z,~) =p~({ [aN, b,v] x [cM, dM]},oo) 

= [ G(o9 o, 1, dM)- G(coo, 1, Cm)][F(coo, b N ) -  F(coo, aN)] 

=G(CO_M, 1, 1) P~_M~_,,,+,P~_u§ P,o~_,o~ N (A.14) 

Now, we consider the case with N<0.  Let c3= {co,,}-M~,,~N and 
oh'= {co~,} -M~<,,~N be different finite sequences; then co,,, ~coi,, for some n', 
and 

N N 

B'" n B-J{[0,1]2}% = n 
j = - -M j = - -M 

N N 

B'" n B-J{[0,1]2},o)= n 
j =  - -M j =  - -M 

which gives 

N N 

N ~ - q [ 0 ,  1]2}o~jn n B-J{ l0, I]2},o; 
j =  --M j = --M 

=B- ' "  B-J+'"{[ 0, l]2},oj c~ n 
) M 

= B - " ~  = ~ 

B-J+"'{E 0, 1]2},ojc {[0, 1 ]2},o,. 

B-J+'"{ [0, l ]2} ,o;= { [0, 1 ]2},,,;, 

(A.15a) 

(A.15b) 

B-J+'"{ [0, 1]:}o;) 
j ~ - - g  

(A.16) 
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as a result of 

{[0, 1 ]"}~,,,.m { [0, 112}~;, = ~  

with ~ being the empty set. 
Then, we have 

[ o 1 .=(~-'z~)=a= U U ... U N B-s{[ 0, 112}o,, 
~0 o1-1 (.ON+ I j = - - M  

=E E " E ~'= ~-:{1:0, 1Y}o. 
o,0 cu_  I tON+ I j M 

- -X  X ' "  X G(O)_M, 1, 1)P,,,_.,,,o_,...+, 
~ ~ - I  CON+I 

X P,o-u+t~O-M+,_''" P,o~-io, NP,o~,oN+l "'" P,o-l,oo 

=G(co_ M, 1, 1)P,o_u,,_M+~P,o_M+t,o_u+,'''Po, N_,o,a (A.17) 

where we have used U~oB-J{[0,1]2},o=(total phase space), (A.16), 
(A.14), and ~ . j P o =  1, respectively, at the first, second, third, and fourth 
equalities. 

Similarly, the statement (2) for M < 0 can be proved by using Eq. (4.4) 
instead of ~ j  Po = 1. 

(3) The shift invariance of ps follows directly from the result (2). 
Because of 

S =#=( -M, CO_M+I ..... coN_ 1) P~,~_,o~ ~ I ~ ( ( . O _ M , O ) _ M + I , . . . , O ) N _ I , O ) N  ) S 09 

we have 

So) E ,Ucx( - - M ,  ( 0 - - M + I  . . . . .  ( ' O N - - I ,  (-ON) 
OJ N 

s O)N-1) ~, P,o,v_,,o^, : / l ~ x ( ( O  - - M ,  ( ' O - - M +  I , ' " ,  
to N 

= ] l S (  (0 - -M,  O ) - - M +  l . . . . .  O ) N - - I  ) 

which implies the Markov property of/ l  s. QED 

APPENDIX B. INCOMPLETE TAKAGI FUNCTION 

In this appendix, we discuss the property of the incomplete Takagi 
function introduced in Section 6. First, we show that the multiple func- 
tional equation (6.9) uniquely defines the incomplete Takagi function and 
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that it is continuous. This property appears as a special case of the 
following theorem: 

T h e o r e m  B. Let z be x or y and let {w,(z)} ( n = 0  ..... N) be con- 
tinuous functions of z e [0, 1] satisfying w,(O)= w,,(1)= 0. We introduce a 
transformation ~ as 

f�89 0~<z<�89 
"Y-3g"(z)=~�89 �89  (B.1) 

where n = 0, 1 ..... N with the conventions g_, (z)  = gN+ ,(z) - 0. Then, the 
fixed-point equation 

~3g,,(z) = g,,(z) ( n = 0 ,  1 ..... N) (B.2) 

admits a unique solution which is continuous in z and satisfies 

max [Ig,[Io~<2 max Ilw.lloo (B.3) 
O<~n~<N O~<n~N 

with 

Ilg,,ll~ = sup Ig,,(z)l 
0~<-'~<1 

The multiple functional equation (6.9) for the incomplete Takagi func- 
tion is a special case of the fixed-point equation (B.2) with the choice of 
z = y and 

y, 0 ~< y < 1/2 (B.4) 
w , ( y ) =  l - y ,  1/2<~y<~l 

which satisfies 

IIw, II ~ ~ 1/2 (B.5) 

Therefore, the uniqueness and the continuity of the incomplete Takagi 
function follow immediately from Theorem B. Its upper bound (6.10) is a 
consequence of (B.3) and (B.5). 

Also (6.11) holds: 

l i T , -  TIIo~ ~< (�89 (B.6) 

where T is the Takagi function and k = max(n, N -  1l). Indeed, by subtract- 
ing the functional equation (4.14) for the Takagi function from the each 
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member of the multiple functional equation for the incomplete Takagi 
function (6.9), we obtain 

II Z .  - TII o~ ~ �89 max( II T, +, - TII ~,  II Z,,_ l - TII ~) 

~< �89 max II T , , + j -  Tll o~ 
- - I ~ < j ~ < l  

~<(1)2 max LIT,+j-TI[oo 
- -2~<j<~2 

~< . . .  ~<(�89 max IIT,,+j-Tllo~ 
--k<~j<<.k 

~<(�89 max I IT , , -T I I~  
O<~m<~N 

~<(1)* [ max ]]T,,]lo~ + ]]Tl]oo] 
O<~m<~N 

<~(�89 

Finally, we give the proof  of Theorem B: 

P r o o f  o f  T h e o r e m  B. Since 

07- ~ ,  II ~ 1 max 11~g,,--~'3/5,,Lloo'~2 max Ilg, ,-g, , l [~ 
0~<n~<N 0~<n~<N 

the transformation ~3 is a contract ion and thus the fixed-point equation 
(B.2) admits a unique fixed point. It is also obvious that, if g,,(z) is con- 
tinuous in z and satisfies g , ( 0 ) =  g,,(I)  = 0 for all 0 <~n ~< N, then ~3 g,,(z) 
possesses the same properties. Therefore, the elements of the sequence 
{d / 3q,(=)} (S=0 ,  l,...) with q, , (z )=O,  which uniformly converges to the 
fixed point  of ~ ,  are all continuous in z and thus the fixed point itself is 
continuous as a uniform limit of continuous functions. Moreover,  by the 
definition (B. 1) of the transformation ~3, we have 

max Ilg,,llo~= max [l~g,,llo~�89 max IIg,,ll~.-I-max IIw,,ll~ 
0~<n<~N 0<~n~<N 0~<n~<N 0~<n~<N 

which leads to (B.3). QED 

APPENDIX C. PROOF OF THE CONVERGENCE TO 
THE ASYMPTOTIC  STATE FOR 
FINITE MULTIBAKER CHAIN 

In this appendix, we give the details of the proof  of the asymptotic 
convergence to the stationary state for the finite multibaker chain discussed 
in Section 6.4. 
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C1. Inequality for the Second-order Derivative of the 
Cumulat ive Function a2Gt 

We derive the inequality (6.12) for the second-order derivative of the 
cumulative function O].G,. Since the forward time evolution (6.3a) and (6.6) 
keeps the smoothness of G,(n, x, y) with respect to x, we can derive the 
time evolution equation for the second-order derivative O~.G, by differen- 
tiating (6.3a) and (6.6) with respect to x: 

I 2 t I-~O.,.,G,(n + 1, x ,  2y)1.,., =.,./_~, 
O].G,+l(n,x, y) i 2 = ~za,.,Gt(n + 1, x ,  1)I.,-, =.,-/2 

1 2 t ( +~O.,.,G,(n--l,x,2y--1)l.,.,=~.,.+ll/2, 

0 ~ Y < � 8 9  

l~<y~<l 

(C.I) 

where n =0,  1, 2 ..... N and O~,.G,( - 1, x, y) =02,.G,(N+ I, x, y) -=0. Equa- 
tion (C.1) immediately gives the desired result (6.12): 

IIO;.G,II~< �89 <~(�89 2 �9 .. lla.,.Goll (C.2) 

where 

IIO].G, II = max  sup O].G,(n,x, Y)I (C.3) 
0 ~ < n ~ < N  0~<A'~< I 

0 ~ < ) , ~ < 1  

C2. Separation of the Cumulat ive Function into the 
x-Uni form Term and the Rest 

Here, we show that the deviation ~, of the cumulative function G, from 
the x-uniform term xG,(n, 1, y), defined in (6.14b), obeys the inequality 
(6.14c). Indeed, the inequality (C.2) and the definition (6.14b) immediately 
give the desired estimation (6.14c) because 

16,(n, x, Y)I ~< IIO~.G, II dx' 

~<T IIO;G, II ~< 

, x, ) 

II0~.Goll (C.4) 

C3. Noise Term in the Random Walk Equation (6.15a} 

We give an explicit expression for the noise term r/, in the random 
walk equation (6.15a) and show that it obeys the inequality (6.15b). From 
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the time evolution equations (6.3a) and (6.6) with x = y = 1 and the defini- 
tions of the x-uniform term and the rest (6.14), we get (6.15a) together with 
the noise r/,: 

rh(n)=�89 ~ 1 ) - - 6 , ( n - - l , '  1)] (0<~n~<N) (C.5) ~, 5, 

where 3 , ( -1 ,  1/2, 1)=O,(N+ 1, 1/2, 1)=0.  Then, as a result of (C.4), we 
have the desired result 

Iq , (n) l~<�89189 ~ ' ' _ ~Z, 1)1 ~<(-5) II0Z.Goll (C.6) 

C4. Solution of the Random Walk Equation (6.15a) 

Equation (6.15a) is solved with the aid of the discrete sine transforma- 
tion, which is based on a formula valid for m, m' = 1, 2 ..... N + 1: 

N + 2  ~ sin m sin m' =6,,,,, (C.7) 
n =  1 

To solve (6.15a), we set 

h,(n)=-G,(n,l, 1 ) - [  p+-p-N+2 ( n + l ) + p _ ]  (C.8) 

which satisfies the same equation as G,(n, 1, 1) with a different boundary 
condition: 

h, + ,(n) = �89 [ h,(n - 1 ) + h,(n + 1 )] + r/,(n) (C.9a) 

h t ( - 1 ) = h , ( N +  1)=0  (C.9b) 

By multiplying sin{ [01 + 1)/(N+ 2)] rim} to (C.9a) and summing over n 
from 0 to N, we obtain 

( rrn, "~ 
ht(m) = cos \At--+-2//~t-,(m) + 0,_ l(m) 

~m '~' f ~m V - '  
cos ~---~)  /~o(m)+ ~ O,-.,.(m) (C.10) 

where 

1l+ 1 ) 
h,(m) = ~. sin \ N  + 2 nm h,(n) 

t l ~ 0  

'̂ (,,+1 ) 
0,(m) = y'  sin \ N + 2 n m  q,(n) 

n~O 

(c.11) 

822/81/5-6-8 
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With the aid of the inversion formula (C.7), we obtain the desired solution 
for (C.9) and thus for (6.15a). Finally, the solution h,(n) is given by 
Eq. (6.16a). 

C5. Asymptot ic  Behavior of the Solution of the 
Random Walk Equation (6.15a) 

From (C.I1) with t = 0  and the upper bound (C.6) for r/,, we have 

[ /~o(m) l~<(N+l )  sup 117o(,7)1 
0~<n~<N 

IO,(m)l ~< (N+ I)(�89 I[O~.Gol[ 

On the other hand, for 1 ~< m ~< N + 1 

nm n (C.13a) c o s ~  ~<COSN+2 

and for N > 1 

(C.12a) 

(C.12b) 

n 1 
cos ~-~--~ > ~ (C.13b) 

Therefore, the solution (6.16a) of (6.15a) satisfies 

Ih,(n)l : r ], 1)-IP+N+2-P~-(17+ 1) +p_]] 

cos ~ sup Ihdn)l 
"~ - R - + Z  . . . .  , o_<. .<= 

( Y "} + O.~.aoll ~ cos~--~ /  
s = l  

<. K~/o 

where 7o is defined by Eq. (6.17b) and 

K 2 ( N + l  )=[ 2 II0~.Goll ] 
sup Ih0(n)l-~ 

N + 2  / L O~,,~<N 2 cos [n / (N+ 2)] - 1 ] 

(c.14) 

(C.15) 

C6. Equation for G,(n, 1, y) 

As explained in Section 6, by substituting (6.14a) into (6.3a) and (6.6) 
and setting x = 1, we obtain the equation of motion for G,(n, l, y) which 
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is given by Eq. (6.18a) in terms of the transformation ~_~ defined by 
Eq. (6.18b) of Section 6. In these equations, the deviation 6G,(n, 1, y) is 
given by 

~ h , ( n  + 1), �89 O<~n<~N--I 
6G,(n, 1, y) - tO, otherwise (C.16) 

and the "noise" ~, is 

~'~6,(n + 1, �89 2y), 0~<y<�89 (C.17) 
~'(n' Y ) -  ~i~,(n + 1, �89 1 ) -  �89 1, �89 2 y -  11, �89 

where 0 ~< n ~< N with conventions di,( -- 1, 1/2, y) = <~,(N+ 1, 1/2, y) =- 0. 
The inequalities (C.14) and (C.4) imply, respectively, 

K I 
IOG,(n, 1, y)l ~<~-~o (c.18) 

I~,(n, Y)I~< ~ II0~.G011 (C.19) 

so that the deviation and "noise" terms vanish exponentially. 

A P P E N D I X  D. FRACTAL D I M E N S I O N  OF THE STABLE 
M A N I F O L D S  OF THE REPELLER 

In this appendix, we calculate the ffactal dimension of the set �9 of 
phase points for which the escape time from a multibaker chain of length 
N +  1 is infinite. This set is formed by the stable manifolds of the fractal 
repeller. 

By definition, it is obvious that �9 is a set of phase points whose sym- 
bolic representations contain the symbols O, 1 ..... N in the right-hand side of 
their symbolic sequence: 

~=r  . . . .  j<~.~O:cojE{O, 1 ..... N} ( j=O,  1,,..)} (D.1) 

where/2 is the, space of all symbolic sequences generated by the multibaker 
map B and a is the map inducing the symbolic representation (cf. 
Appendix A). 

We calculate the Hausdorff dimension of the set ~k - ~ n { [0, 1-12} 
(k = 0, 1 ..... N). First, we introduce auxiliary sets and study their properties. 
Let o3= {cOj}o~<j~<,,, be a finite symbolic sequence of length m +  1, which 



9 8 4  T a s a k i  a n d  G a s p a r d  

consists of symbols 0, 1, 2 ..... N and satisfies o% = k and %.+ ~ =~oj_ 1, and 
Z (k'"') be the corresponding cylindrical set: a3 

~ ' t k ,  m) = , , ,o _{co'={co}} . . . .  j < o ~ O : C o o = k ,  c o j = c o i ( j = l  ..... m)} (D.2) 

Further we denote the union of these cylindrical sets corresponding to fixed 
k a n d  m as 2~(u,.,): 

U'  (k.~) (D.3) 
o~ 

Obviously, we have 

a - l Z ~ k , , , , ) ~ a - l Z ( k . . , , )  (m'>~m) (D.4a) 

q~k= N a - J ~ k . , , o  (D.4b) 
m = 0  

_ -- Iv" (k m) The number of cylindrical sets o ~.~' can be counted as follows. 
Let us introduce an (N + 1)x (N + 1) matrix A = { A o} (0 <. i, j <~ N): 

1, i = j + _ l  

Au= 0, otherwise (D.5) 

Then for a finite symbolic sequence 03= {%}o~j<. , ,  we have 

A ,oo,,,~ A ,o, ,o2 " " " A o,,,,_ , ,o,, 

10 if the cylindrical set a - l L  "~k'''l exists = o~ (D.6) 
otherwise 

which leads to 

1Z(k,,,~) ~ { number of cylindrical sets a -  _ ~  , 

N N 

-N, , ,=  E ... 2 Ao~o~,A~,~:...A . . . .  , ~ . ,  

col=O ahn=0 

,,, = 2 c o s  
=,,=o y" (A)k,, N+  2 , = ,  

s: o d d  

/ k + 1 "~ r~s 

The equality (D.7) can be shown straightforwardly by diagonalizing the 
matrix A = {Aij} in terms of a discrete sine transformation discussed in 
Section C4 of Appendix C. 
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On the other hand, as shown in Appendix A, each cylindrical set 
- lZ(k ' ' )  has the structure of [cf. (1) of Lemma A] O" o3 

o.-1 (k.m)_ [0, l ]}k Z,Z , - { [ a . , , b m ] X  (D.8) 

-- Iv' ,  (k  m) r - I ~  (k ,m)  where b , , , -a , ,=  1/2 m, and two cylindrical sets o. ~o3" and _ _o3, 
corresponding to different finite sequences o3 and e3' are disjoint [cf. (A.16) 

-l~-(k.,) ., B-J{[0,  1]z},oj] for the set tr ~o3"  = N j = o  

o.--Icv'(k,m) ( -~O3 __o.-- IX(~ ' ' ) -  6 ~ o 3 ,  - ~ (D.9) 

Now, we calculate the Hausdorff dimension of the set ~k. Let us con- 
sider a covering of r which consists of 1 /2"x  1/2" squares. Because of 
(D.4), the minimum number of such squares necessary for covering r can 
be estimated as the minimum number v., of squares necesary for covering 
the set a -  IZ(k,.,). Since the number of squares necessary for covering each 
cylindrical set a-12~ (k..,) is equal to 2" [cf. (D.8)] and different cylindrical - -  o3 

sets are disjoint [cf. (D.9)], the number v,,, is equal to the product of 2"' 
_ - -  I V '  ( k  m ) .  and the number N,. of cylindrical sets o ~o3" . v,. = 2"N., .  Thus, the 

D-dimensional measure of the set #~ is estimated as the m ~ + ~  limit of 

(1)~ 2raN,,, 

_ . 2 2 - D  

N + 2  ~=1 
s :  o d d  

/ k + l  
x sin ~ ~---~ zcs) 

cos N + 2J 

(D.10) 

where l . ,= 1/2"' is the length of the side of each covering square. For 
m ~  +oo, the expression (D.10) diverges if 2"--DCOS[Tr/(N+2)] > 1 and 
vanishes if 2 2 -n  cos[ l r / (N+ 2)] < 1. Hence the Hausdorff dimension DH of 
the set (Pk is determined from 2 2-0"  cos[ r r / (N+2)]  = 1, or 

In cos[ l r / (N+ 2 ) ]  

D H = 2 +  ln2 (D.I1) 

Moreover, the corresponding Hausdorff measure of ~k is estimated as 

p H ( r  ' 2QN . f k + l  ) . . . .  - N +  2 s i n  (D.12a) 
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where the prefactor is given by 

IE I for  odd cot 2(N-+2) ' 

[ ~z ] [ rc 1 for Neven Qu= {,cot 2(N-+2) - t a n  2(N--+2) ' 

(D.12b) 

As DH is independent of the site coordinate k, the Hausdorff dimension of 
the stable manifolds �9 of the repeller is equal to DH. On the contrary, as 
seen in (D.12), the DH-dimensional measure of ~k=qSC~{[0,1]2}k 
depends sinusoidally on the site coordinate k:llH(~k)~sin[n(k+l)/ 
(N+2)] .  
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